68 research outputs found

    Analysis of Energy Consumption Performance towards Optimal Radioplanning of Wireless Sensor Networks in Heterogeneous Indoor Environments

    Get PDF
    In this paper the impact of complex indoor environment in the deployment and energy consumption of a wireless sensor network infrastructure is analyzed. The variable nature of the radio channel is analyzed by means of deterministic in-house 3D ray launching simulation of an indoor scenario, in which wireless sensors, based on an in-house CyFi implementation, typically used for environmental monitoring, are located. Received signal power and current consumption measurement results of the in-house designed wireless motes have been obtained, stating that adequate consideration of the network topology and morphology lead to optimal performance and power consumption reduction. The use of radioplanning techniques therefore aid in the deployment of more energy efficient elements, optimizing the overall performance of the variety of deployed wireless systems within the indoor scenario

    Broadband characterisation of interior materials and surface scattering using terahertz time-domain spectroscopy

    Get PDF
    Indoor wireless communications need to move towards Terahertz (THz) frequencies in order to keep up with society's demand for data transmission, but this change is currently hindered by limited knowledge of material properties and propagation and scattering models at these frequencies. The dielectric properties of common household materials are investigated here with a twofold objective: (1) to extend the library of material properties at THz, and (2) to estimate and disentangle losses in scattering measurements in order to facilitate propagation, scattering and, ultimately, channel models

    Optimum power transfer in RF front end systems using adaptive impedance matching technique

    Get PDF
    Matching the antenna's impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna's radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end. The proposed technique converges to a matching point without the need of complex mathematical modelling of the system comprising of non-linear control elements. Digital circuitry is used to implement the required matching circuit. Reliable convergence is achieved within the tuning range of the LC-network using control-loops that can independently control the LC impedance. An algorithm based on the proposed technique was used to verify its effectiveness with various antenna loads. Mismatch error of the technique is less than 0.2%. The technique enables speedy convergence (<5 s) and is highly accurate for autonomous adaptive antenna matching networks

    A comprehensive survey on 'circular polarized antennas' for existing and emerging wireless communication technologies

    Get PDF
    Circular polarized (CP) antennas are well suited for long-distance transmission attainment. In order to be adaptable for beyond 5G communication, a detailed and systematic investigation of their important conventional features is required for expected enhancements. The existing designs employing millimeter wave, microwave, and ultra-wideband (UWB) frequencies form the elementary platform for future studies. The 3.4-3.8 GHz frequency band has been identified as a worthy candidate for 5G communications because of spectrum availability. This band comes under UWB frequencies (3.1-10.6 GHz). In this survey, a review of CP antennas in the selected areas to improve the understanding of early-stage researchers specially experienced antenna designers has presented for the first time as best of our knowledge. Design implementations involving size, axial ratio, efficiency, and gain improvements are covered in detail. Besides that, various design approaches to realize CP antennas including (a) printed CP antennas based on parasitic or slotted elements, (b) dielectric resonator CP antennas, (c) reconfigurable CP antennas, (d) substrate integrated waveguide CP antennas, (e) fractal CP antennas, (f) hybrid techniques CP antennas, and (g) 3D printing CP antennas with single and multiple feeding structures have investigated and analyzed. The aim of this work is to provide necessary guidance for the selection of CP antenna geometries in terms of the required dimensions, available bandwidth, gain, and useful materials for the integration and realization in future communication systems

    The Effects of an Adaptive and Distributed Transmission Power Control on the Performance of Energy Harvesting Sensor Networks

    Get PDF
    The design of routing protocols for wireless sensor networks (WSNs) has been traditionally tackled by assuming battery-powered sensors, in which minimizing the power consumption was the main objective. Advances in technology and the ability to harvest energy from the environment has enabled self-sustaining systems and thus diminish the significance of network lifetime considerations in the design of WSNs. Although WSNs operated by energy-harvesting sensors are not limited by network lifetime, they still pose new design challenges due to the unstable and uncertain amount of energy that can be harvested from the environment. In this paper, we propose a new protocol for energy-harvesting sensor networks that uses adaptive transmission power to maintain the network connectivity, and distributes the traffic load on the network. Based on local information, each node dynamically adjusts its transmission power in order to maximize the network’s end-to-end performance. The simulation results indicate that the proposed protocol keeps the network connected at most of the times by using an efficient power management, outperforming greedy forwarding and dynamic duty cycle protocols in terms of packet delivery ratio, delay, and power management

    Calibration errors on experimental slant total electron content (TEC) determined with GPS

    Get PDF
    The Global Positioning System (GPS) has become a powerful tool for ionospheric studies. In addition, ionospheric corrections are necessary for the augmentation systems required for Global Navigation Satellite Systems (GNSS) use. Dual-frequency carrier-phase and code-delay GPS observations are combined to obtain ionospheric observables related to the slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). This observable is affected by inter-frequency biases [IFB; often called differential code biases (DCB)] due to the transmitting and the receiving hardware. These biases must be estimated and eliminated from the data in order to calibrate the experimental sTEC obtained from GPS observations. Based on the analysis of single differences of the ionospheric observations obtained from pairs of co-located dual-frequency GPS receivers, this research addresses two major issues: (1) assessing the errors translated from the code-delay to the carrier-phase ionospheric observable by the so-called levelling process, applied to reduce carrier-phase ambiguities from the data; and (2) assessing the short-term stability of receiver IFB. The conclusions achieved are: (1) the levelled carrier-phase ionospheric observable is affected by a systematic error, produced by code-delay multi-path through the levelling procedure; and (2) receiver IFB may experience significant changes during 1 day. The magnitude of both effects depends on the receiver/antenna configuration. Levelling errors found in this research vary from 1.4 total electron content units (TECU) to 5.3 TECU. In addition, intra-day vaiations of code-delay receiver IFB ranging from 1.4 to 8.8 TECU were detected.Facultad de Ciencias Astronómicas y Geofísica

    A Comprehensive Survey on 'Various Decoupling Mechanisms with Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems'

    Get PDF
    Nowadays synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO) antenna systems with the capability to radiate waves in more than one pattern and polarization are playing a key role in modern telecommunication and radar systems. This is possible with the use of antenna arrays as they offer advantages of high gain and beamforming capability, which can be utilized for controlling radiation pattern for electromagnetic (EM) interference immunity in wireless systems. However, with the growing demand for compact array antennas, the physical footprint of the arrays needs to be smaller and the consequent of this is severe degradation in the performance of the array resulting from strong mutual-coupling and crosstalk effects between adjacent radiating elements. This review presents a detailed systematic and theoretical study of various mutual-coupling suppression (decoupling) techniques with a strong focus on metamaterial (MTM) and metasurface (MTS) approaches. While the performance of systems employing antenna arrays can be enhanced by calibrating out the interferences digitally, however it is more efficient to apply decoupling techniques at the antenna itself. Previously various simple and cost-effective approaches have been demonstrated to effectively suppress unwanted mutual-coupling in arrays. Such techniques include the use of defected ground structure (DGS), parasitic or slot element, dielectric resonator antenna (DRA), complementary split-ring resonators (CSRR), decoupling networks, P.I.N or varactor diodes, electromagnetic bandgap (EBG) structures, etc. In this review, it is shown that the mutual-coupling reduction methods inspired By MTM and MTS concepts can provide a higher level of isolation between neighbouring radiating elements using easily realizable and cost-effective decoupling configurations that have negligible consequence on the arrays characteristics such as bandwidth, gain and radiation efficiency, and physical footprint

    Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection

    Get PDF
    This paper presents a study of a planar antenna-array inspired by the metamaterial concept where the resonant elements have sub-wavelength dimensions for application in microwave medical imaging systems for detecting tumors in biological tissues. The proposed antenna consists of square-shaped concentric-rings which are connected to a central patch through a common feedline. The array structure comprises several antennas that are arranged to surround the sample breast model. One antenna at a time in the array is used in transmission-mode while others are in receive-mode. The antenna array operates over 2-12 GHz amply covering the frequency range of existing microwave imaging systems. Measured results show that compared to a standard patch antenna array the proposed array with identical dimensions exhibits an average radiation gain and efficiency improvement of 4.8 dBi and 18%, respectively. The average reflection-coefficient of the array over its operating range is better than S-11 <= -20 dB making it highly receptive to weak signals and minimizing the distortion encountered with the transmission of short duration pulse-trains. Moreover, the proposed antenna-array exhibits high-isolation on average of 30dB between radiators. This means that antennas in the array (i) can be closely spaced to accommodate more radiators to achieve higher-resolution imaging scans, and (ii) the imagining scans can be done over a wider frequency range to ascertain better contrast in electrical parameters between malignant tumor-tissue and the surrounding normal breast-tissue to facilitate the detection of breast-tumor. It is found that short wavelength gives better resolution. In this experimental study a standard biomedical breast model that mimics a real-human breast in terms of dielectric and optical properties was used to demonstrate the viability of the proposed antenna over a standard patch antenna in the detection and the localization of tumor. These results are encouraging for clinical trials and further refinement of the antenna-array

    Bandwidth and gain enhancement of composite right left handed metamaterial transmission line planar antenna employing a non foster impedance matching circuit board

    Get PDF
    The paper demonstrates an effective technique to significantly enhance the bandwidth and radiation gain of an otherwise narrowband composite right/left-handed transmission-line (CRLH-TL) antenna using a non-Foster impedance matching circuit (NF-IMC) without affecting the antenna's stability. This is achieved by using the negative reactance of the NF-IMC to counteract the input capacitance of the antenna. Series capacitance of the CRLH-TL unit-cell is created by etching a dielectric spiral slot inside a rectangular microstrip patch that is grounded through a spiraled microstrip inductance. The overall size of the antenna, including the NF-IMC at its lowest operating frequency is 0.335 lambda (0)x0.137 lambda (0)x0.003 lambda (0), where lambda (0) is the free-space wavelength at 1.4 GHz. The performance of the antenna was verified through actual measurements. The stable bandwidth of the antenna for |S-11|<= -18 dB is greater than 1 GHz (1.4-2.45 GHz), which is significantly wider than the CRLH-TL antenna without the proposed impedance matching circuit. In addition, with the proposed technique the measured radiation gain and efficiency of the antenna are increased on average by 3.2 dBi and 31.5% over the operating frequency band
    • 

    corecore